0 Superdiffusion in Decoupled Continuous Time Random Walks
نویسندگان
چکیده
Continuous time random walk models with decoupled waiting time density are studied. When the spatial one jump probability density belongs to the Levy distribution type and the total time transition is exponential a generalized superdiffusive regime is established. This is verified by showing that the square width of the probability distribution (appropriately defined)grows as t 2/γ with 0 < γ ≤ 2 when t → ∞. An important connection of our results and those of Tsallis' nonextensive statistics is shown. The normalized q-expectation value of x 2 calculated with the corresponding probability distribution behaves exactly as t 2/γ in the asymptotic limit.
منابع مشابه
Reaction-subdiffusion and reaction-superdiffusion equations for evanescent particles performing continuous-time random walks.
Starting from a continuous-time random-walk (CTRW) model of particles that may evanesce as they walk, our goal is to arrive at macroscopic integrodifferential equations for the probability density for a particle to be found at point r at time t given that it started its walk from r_{0} at time t=0 . The passage from the CTRW to an integrodifferential equation is well understood when the particl...
متن کاملAsymptotic Distributions of the Continuous - TimeRandom
We provide a systematic analysis of the possible asymptotic distributions of one-dimensional continuous-time random walks (CTRWs) by applying the limit theorems of probability theory. Biased and unbiased walks of coupled and decoupled memory are considered. In contrast to previous works concerning decoupled memory and L evy walks, we deal also with arbitrary coupled memory and with jump densiti...
متن کاملSudden onset of log-periodicity and superdiffusion in non-Markovian random walks with amnestically induced persistence: exact results
Random walks can undergo transitions from normal diffusion to anomalous diffusion as some relevant parameter varies, for instance the Lévy index in Lévy flights. Here we derive the Fokker-Planck equation for a two-parameter family of non-Markovian random walks with amnestically induced persistence. We investigate two distinct transitions: one order parameter quantifies log-periodicity and discr...
متن کاملFractional telegrapher's equation from fractional persistent random walks.
We generalize the telegrapher's equation to allow for anomalous transport. We derive the space-time fractional telegrapher's equation using the formalism of the persistent random walk in continuous time. We also obtain the characteristic function of the space-time fractional process and study some particular cases and asymptotic approximations. Similarly to the ordinary telegrapher's equation, ...
متن کاملAsymptotic solutions of decoupled continuous-time random walks with superheavy-tailed waiting time and heavy-tailed jump length distributions.
We study the long-time behavior of decoupled continuous-time random walks characterized by superheavy-tailed distributions of waiting times and symmetric heavy-tailed distributions of jump lengths. Our main quantity of interest is the limiting probability density of the position of the walker multiplied by a scaling function of time. We show that the probability density of the scaled walker pos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000